

DEPARTMENT OF HIGHER EDUCATION U.P. GOVERNMENT, LUCKNOW

National Education Policy-2020 Common Minimum Syllabus for all U.P. State Universities and Colleges For first three years of Higher Education (UG)

UG PHYSICS SALLYBUS

PROF. RAJENDRA SINGH (RAJJU BHAIYA) UNIVERSITY, MIRZAPUR ROAD, NAINI, PRAYAGRAJ-211010 WWW.PRSUNIV.AC.IN

Name		Desig	gnation	Affiliation		
Steeri	ng Committee					
	Ionika S. Garg, (I.A.S.) rson Steering ree	Additional Chief Secretary		Dept. of Hig	Dept. of Higher Education U.P., Lucknow	
Prof. P	oonam Tandan	Profes Dept.	ssor, of Physics	Lucknow U	niversity, U.P.	
Prof. H	lare Krishna	Profe Dept.	ssor, of Statistics	CCS Univer	sity Meerut, U.P.	
Dr. Dir	nesh C. Sharma		ciate Professor, of Zoology	K.M. Govt. Nagar, U.P.	K.M. Govt. Girls P.G. College Badalpur, G.B. Nagar, U.P.	
Super	visory Committee-Sci	ence Fa	aculty			
Dr. Vij	ay Kumar Singh	Associate Professor, Dept. of Zoology		Agra College, Agra		
Dr. Sar	ntosh Singh	Dean, Dept. of Agriculture		Mahatma Ga	Mahatma Gandhi Kashi Vidhyapeeth, Varanasi	
Dr. Bal	by Tabussam	Associate Professor, Dept. of Zoology		Govt. Raza P.G. College Rampur, U.P.		
Dr. Sar	njay Jain	Associate Professor, Dept. of Statistics		St. John's College, Agra		
Syllab	ous Developed by:					
S.No.	Name		Designation	Department	College/University	
1.	Dr. Gaurang Misra		Associate Professor	Physics	Agra College, Agra	
2.	Dr. Naresh Kumar Chau	ıdhary	Associate Professor	Physics & Electronics	Dr. R. M. L. A. University, Faizabad	
3.	Dr. Vikram Singh		Assistant Professor	Physics	St. John's College, Agra	

SEMESTER-WISE TITLES OF THE PAPERS IN UG PHYSICS COURSE						
YEAR	STER CODE		THEORY / PRACTICAL	CREDIT		
CERTIFICATE -IN BASIC PHYSICS & SEMICONDUCTOR DEVICES _ B010101T Mathematical Physics & Newtonian Mechanics Theor						
	I	B010101T	Mathematical Physics & Newtonian Mechanics	Theory	4	
FIRST YEAR	1	B010102P	Mechanical Properties of Matter	Practical	2	
FIRST YEAR	П	B010201T	Thermal Physics & Semiconductor Devices	Theory	4	
	11	B010202P	Thermal Properties of Matter & Electronic Circuits	Practical	2	
		DIPLO	MA - IN APPLIED PHYSICS WITH ELECTRON	ICS		
•	ш	B010301T	Electromagnetic Theory & Modern Optics	Theory	4	
SECOND YEAR	111	B010302P	Demonstrative Aspects of Optics & Lasers	Practical	2	
ECONI	IV	B010401T	Perspectives of Modern Physics & Basic Electronics	Theory	4	
\mathbf{S}		B010402P	Basic Electronics Instrumentation	Practical	2	
		·	DEGREE -IN BACHELOR OF SCIENCE			
		B010501T	Classical & Statistical Mechanics	Theory	4	
	V	B010502T	Quantum Mechanics & Spectroscopy	Theory	4	
		B010503P	Demonstrative Aspects of Electricity & Magnetism	Practical	2	
AR AR		B010504R	Research Project	Project	Qualifying	
THIRD		B010601T	Solid State & Nuclear Physics	Theory	4	
	VI	B010602T	Analog & Digital Principles & Applications	Theory	4	
		B010603P	Analog & Digital Circuits	Practical	2	
		B010604R	Research Project	Project	Qualifying	

UG Physics Syllabus

{Page 2 of 48}

SUBJECT PREREQUISITES

To study this subject, a student must have had the subjects **<u>Physics & Mathematics</u>** in class 12th.

PROGRAMME OUTCOMES (POs)

The practical value of science for productivity, for raising the standard of living of the people is surely recognized. Science as a power, which provides tools for effective action for the benefit of mankind or for conquering the forces of Nature or for developing resources, is surely highlighted everywhere. Besides the utilitarian aspect, the value of Science, lies in the fun called intellectual enjoyment. Science teaches the value of rational thought as well as importance of freedom of thought.

Our teaching so far has been aimed more at formal knowledge and understanding instead of training and application oriented. Presently, the emphasis is more on training, application and to some extent on appreciation, the fostering in the pupils of independent thinking and creativity. Surely, teaching has to be more objective based. The process of application based training, whether we call it a thrill or ability, is to be emphasized as much as the content.

Physics is a basic science; it attempts to explain the natural phenomenon in as simple a manner as possible. It is an intellectual activity aimed at interpreting the Multiverse. The starting point of all physics lies in experience. Experiment, whether done outside or in the laboratory, is an important ingredient of learning physics and hence the present programme integrates six experimental physics papers focusing on various aspects of modern technology based equipments. With all the limitations imposed (even the list of experiments as given in the syllabus) if the spirit of discovery by investigation is kept in mind, much of the thrill can be experienced.

- 1. The main aim of this programme is to help cultivate the love for Nature and its manifestations, to transmit the methods of science (the contents are only the means) to observe things around, to generalize, to do intelligent guessing, to formulate a theory & model, and at the same time, to hold an element of doubt and thereby to hope to modify it in terms of future experience and thus to practice a pragmatic outlook.
- 2. The programme intends to nurture the proficiency in functional areas of Physics, which is in line with the international standards, aimed at realizing the goals towards skilled India.
- 3. Keeping the application oriented training in mind; this programme aims to give students the competence in the methods and techniques of theoretical, experimental and computational aspects of Physics so as to achieve an overall understanding of the subject for holistic development. This will cultivate in specific application oriented training leading to their goals of employment.
- 4. The Bachelor's Project (Industrial Training / Survey / Dissertation) is intended to give an essence of research work for excellence in explicit areas. It integrates with specific job requirements / opportunities and provides a foundation for Bachelor (Research) Programmes.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

	TROORAMINE STEELFTE OUTCOMES (TSOS)				
	CERTIFICATE				
	IN BASIC PHYSICS & SEMICONDUCTOR DEVICES				
	This programme aims to give students the competence in the methods and techniques of calculations				
~	using Newtonian Mechanics and Thermodynamics. At the end of the course the students are expected				
	to have hands on experience in modeling, implementation and calculation of physical quantities of				
	relevance.				
FIRST YEAR	An introduction to the field of Circuit Fundamentals and Basic Electronics which deals with the				
ΤY	physics and technology of semiconductor devices is practically useful and gives the students an				
RS	insight in handling electrical and electronic instruments.				
E					
	Experimental physics has the most striking impact on the industry wherever the instruments are used.				
	The industries of electronics, telecommunication and instrumentation will specially recognize this				
	course. DIPLOMA				
	IN APPLIED PHYSICS WITH ELECTRONICS				
	This programme aims to introduce the students with Electromagnetic Theory, Modern Optics and				
	Relativistic Mechanics. Electromagnetic Wave Propagation serves as a basis for all communication systems and deals with the physics and technology of semiconductor optoelectronic devices. A				
~	deeper insight in Electronics is provided to address the important components in consumer				
(EA	Optoelectronics, IT and Communication devices, and in industrial instrumentation.				
DA					
NO	The need of Optical instruments and Lasers is surely highlighted everywhere and at the end of the				
SECOND YEAR	course the students are expected to get acquaint with applications of Lasers in technology.				
	Companies and R&D Laboratories working on Electromagnetic properties, Laser Applications,				
	Optoelectronics and Communication Systems are expected to value this course.				
	DEGREE				
	IN BACHELOR OF SCIENCE				
	This programme contains very important aspects of modern day course curriculum, namely, Classical, Quantum and Statistical computational tools required in the calculation of physical				
	quantities of relevance in interacting many body problems in physics. It introduces the branches of				
	Solid State Physics and Nuclear Physics that are going to be of utmost importance at both				
AR	undergraduate and graduate level. Proficiency in this area will attract demand in research and				
THIRD YEAR	industrial establishments engaged in activities involving applications of these fields.				
IRI	This source employments the comprehensive browledge of Apples & Disited Drivelates and				
HT	This course amalgamates the comprehensive knowledge of Analog & Digital Principles and Applications. It presents an integrated approach to analog electronic circuitry and digital electronics.				
	reproductions. It presents an integrated approach to analog electronic circuity and digital electronics.				
	Present course will attract immense recognition in R&D sectors and in the entire cutting edge				
	technology based industry.				

		S	SEMESTER-WISE PAPER TI	TLES WITH DETAI	LS
YEAR	SEME- STER	PAPER	PAPER TITLE	PREREQUISITE For Paper	ELECTIVE For Major Subjects
		T	CERTIFICA N BASIC DUVSICS & SEMIC		
			N BASIC PHYSICS & SEMIC		
	STER	Theory Paper-1	Mathematical Physics & Newtonian Mechanics	Physics in 12 th / Mathematics in 12 th	YES Open to all
FIRST YEAR	SEMESTER I	Practical Paper-2	Mechanical Properties of Matter	Opted / Passed Sem. I, Th. Paper-1	YES Bot./Chem./Comp. Sc./ Math./Stat./Zool.
FIRST	STER	Theory Paper-3	Thermal Physics & Semiconductor Devices	Physics in 12 th / Chemistry in 12 th	YES Open to all
	SEMESTER II	Practical Paper-4	Thermal Properties of Matter & Electronic Circuits	Opted / Passed Sem. II, Th. Paper-1	YES Bot/Chem./Comp. Sc./ Math./Stat./Zool.
			DIPLOM IN APPLIED PHYSICS WI		
	STER	Theory Paper-1	Electromagnetic Theory & Modern Optics	Passed Sem. I, Th. Paper-1	YES Open to all
O YEAR	SEMESTER III	Practical Paper-2	Demonstrative Aspects of Optics & Lasers	Opted / Passed Sem. III, Th. Paper-1	YES Bot./Chem./Comp. Sc./ Math./Stat./Zool.
SECOND YEAR	STER	Theory Paper-3	Perspectives of Modern Physics & Basic Electronics	Passed Sem. I, Th. Paper-1	YES Open to all
	SEMESTER IV	Practical Paper-4	Basic Electronics Instrumentation	Opted / Passed Sem. IV, Th.Paper-1	YES Bot./Chem./Comp. Sc./ Math./Stat./Zool.
			DEGREI IN BACHELOR O		
		Theory	Classical & Statistical	Passed	YES
	R	Paper-1	Mechanics	Sem. I, Th. Paper-1	Chem./Comp. Sc./Math./Stat.
	SEMESTER	Theory	Quantum Mechanics &	Passed	YES
~	MES	Paper-2	Spectroscopy	Sem. IV, Th. Paper-1	Chem./Comp. Sc./Math./Stat.
YEAF	SEI	Practical Paper-3	Demonstrative Aspects of Electricity & Magnetism	Passed Sem. III, Th. Paper-1	YES Chem./Comp. Sc./Math./Stat.
THIRD YEAR	ER	Theory Paper-1	Solid State & Nuclear Physics	Passed Sem. V, Th. Paper-2	YES Chem./Comp. Sc./Math./Stat.
	SEMESTER VI	Theory Paper-2	Analog & Digital Principles & Applications	Passed Sem. IV, Th. Paper-1	YES Open to all
	SE	Practical Paper-3	Analog & Digital Circuits	Opted / Passed Sem. VI, Th. Paper-2	YES Chem./Comp. Sc./Math./Stat.

FIRST YEAR DETAILED SYLLABUS FOR

CERTIFICATE

IN BASIC PHYSICS & SEMICONDUCTOR DEVICES

YEAR	SEME- STER	PAPER	PAPER TITLE	UNIT TITLE (Periods Per Semester)	
			CERTIFIC IN BASIC PHYSICS & SEMIC	CATE	
				Part A	
	SEMESTER I	Theory Paper-1	Mathematical Physics & Newtonian Mechanics Part A: Basic Mathematical Physics Part B: Newtonian Mechanics & Wave Motion	I: Vector Algebra (9) II: Vector Calculus (11) III: Coordinate Systems (6) IV: Frames of References (4) S Part B V: Dynamics of a System of Particles (8) VI: Dynamics of a Rigid Body (8) VII: Motion of Planets & Satellites (7) VIII: Wave Motion (7)	
EAR		Practical	Mechanical Properties of	Lab Experiment List	
FIRST YEAR	SEMESTER II	Paper-2 Theory Paper-3	Matter Thermal Physics & Semiconductor Devices Part A: Thermodynamics & Kinetic Theory of Gases Part B: Circuit Fundamentals & Semiconductor Devices	Part A I: 0 th & 1 st Law of Thermodynamics (8) II: 2 nd & 3 rd Law of Thermodynamics (8) III: Kinetic Theory of Gases (7) IV: Theory of Radiation (7) Part B V: DC & AC Circuits (7) VI: Semiconductors & Diodes (8) VII: Transistors (8) VIII: Electronic Instrumentation (7)	
		Practical Paper-4	Thermal Properties of Matter & Electronic Circuits	Lab Experiment List Online Virtual Lab Experiment List/Link	

Progr	amme/Class: Certificate	Year: Fir	st	Paper: First	
		Subject: P	hysics		
Cours	se Code: B010101T	Course Title	e: Mathematical Pl Mechanics	hysics & Newtonian s	
		Course Outco	mes (COs)		
 Recognize the difference between scalars, vectors, pseudo-scalars and pseudo-vectors. Understand the physical interpretation of gradient, divergence and curl. Comprehend the difference and connection between Cartesian, spherical and cylindrical coordinate systems Know the meaning of 4-vectors, Kronecker delta and Epsilon (Levi Civita) tensors. Study the origin of pseudo forces in rotating frame. Study the response of the classical systems to external forces and their elastic deformation. Understand the dynamics of planetary motion and the working of Global Positioning System (GPS). Comprehend the different features of Simple Harmonic Motion (SHM) and wave propagation. 					
	Credits	: 4	Core	Compulsory / Elective	
	Max. Marks:	25+75	N	Iin. Passing Marks: 35	
	Total No. of Lectures-	Tutorials-Practical (in hours	s per week): L-T-P:	4-0-0	
Unit		Topics			No. of Lectures
	L	<u>PART</u> Basic Mathemat			11
		Dasic Mathema			
I	<i>in context with</i> <i>should be</i> Coordinate rotation, reflect scalars and pseudo-vector Geometrical and physical i	Indianancient Physics and the holistic development of included under Continuou • Vector ction and inversion as the ors (include physical examinet interpretation of addition, super the of vectors. Position, separation	f modern science at us Internal Evaluate or Algebra basis for defining mples). Componen ubtraction, dot prod	<i>nd technology,</i> <i>ion (CIE)</i> scalars, vectors, pseudo- nt form in 2D and 3D luct, wedge product, cross	
п	Vector Calculus Geometrical and physical interpretation of vector differentiation, Gradient, Divergence and Curl and their significance. Vector integration, Line, Surface (flux) and Volume integrals of vector fields. Gradient theorem, Gauss-divergence theorem, Stoke-curl theorem, Greens theorem and Helmholtz theorem (statement only). Introduction to Dirac delta function. Coordinate Systems				
ш	2D & 3D Cartesian, Sphe equations. Expressions for divergence and curl in dif	rical and Cylindrical coor displacement vector, arc le	dinate systems, bas		

	Frames of References				
	Components of velocity and acceleration in different coordinate systems. Examples of non-inertial				
IV	coordinate system and pseudo-acceleration.	4			
	PART B				
	Newtonian Mechanics & Wave Motion				
	Dynamics of a System of Particles				
	Review of historical development of mechanics up to Newton. Background, statement and critical				
V	analysis of Newton's axioms of motion. Dynamics of a system of particles, centre of mass motion,	8			
	and conservation laws & their deductions. Rotating frames of reference, general derivation of origin				
	of pseudo forces (Euler, Coriolis & centrifugal) in rotating frame, and effects of Coriolis force.				
	Dynamics of a Rigid Body				
	Angular momentum, Torque, Rotational energy and the inertia tensor. Rotational inertia for simple				
VI	bodies (ring, disk, rod, solid and hollow sphere, solid and hollow cylinder, rectangular lamina). The	8			
	combined translational and rotational motion of a rigid body on horizontal and inclined planes.				
	Elasticity, relations between elastic constants, bending of beam and torsion of cylinder.				
	Motion of Planets & Satellites				
	Two particle central force problem, reduced mass, relative and centre of mass motion. Newton's				
VII	law of gravitation, gravitational field and gravitational potential. Kepler's laws of planetary motion	7			
	and their deductions. Motions of geo-synchronous & geo-stationary satellites and basic idea of				
	Global Positioning System (GPS).				
	Wave Motion				
	Differential equation of simple harmonic motion and its solution, use of complex notation, damped				
	and forced oscillations, Quality factor. Composition of simple harmonic motion, Lissajous figures.	7			
VIII	Differential equation of wave motion. Plane progressive waves in fluid media, reflection of waves	7			
	and phase change, pressure and energy distribution. Principle of superposition of waves, stationary				
	waves, phase and group velocity.				
	Suggested Readings				
PAR					
	/urray Spiegel, Seymour Lipschutz, Dennis Spellman, "Schaum's Outline Series: Vector Analysis", N	McGraw			
	Fill, 2017, 2e				
	A.W. Joshi, "Matrices and Tensors in Physics", New Age International Private Limited, 1995, 3e				
PAR	<u>T B</u>				
1. C	Charles Kittel, Walter D. Knight, Malvin A. Ruderman, Carl A. Helmholz, Burton J. Moyer, "Mechan	ics (In SI			
U	Jnits): Berkeley Physics Course Vol 1", McGraw Hill, 2017, 2e				
2. R	Cichard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics -	Vol. 1",			
P	Pearson Education Limited, 2012				
3. I	Hugh D. Young and Roger A. Freedman, "Sears & Zemansky's University Physics with Modern	Physics",			
F	Pearson Education Limited, 2017, 14e				
4. E	D.S. Mathur, P.S. Hemne, "Mechanics", S. Chand Publishing, 1981, 3e				
	Books published in Hindi & Other Reference / Text Books may be				
	suggested / added to this list by individual Universities.				

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://www.youtube.com/user/nptelhrd</u>
- 3. Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>
- 4. Swayam Prabha DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Course Prerequisites

Physics in 12th / Mathematics in 12th

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, <u>https://swayam.gov.in/explorer?category=Physics</u>
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/course.html</u>
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, <u>https://www.edx.org/course/subject/physics</u>
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progr	amme/Class: Certificate	Year: Fir		Paper: Second	
Course		Subject: P	•	non-outing of Motton	
Cours	se Code: B010102P	Course 1	itle: Mechanical Pl	roperties of Matter	
		Course Outco	mes (COs)		
deterr	rimental physics has the me nine the mechanical proper e Virtual Lab Experiments	ties. Measurement precision give an insight in simulation	on and perfection is n techniques and pr	achieved through Lab Ex rovide a basis for modeling	periments.
	Credits			Compulsory / Elective	
	Max. Marks:	25+75	Ν	Iin. Passing Marks: 35	
	Total No. of	Lectures-Tutorials-Practic	al (in hours per wee	ek): L-T-P: 0-0-4	
Unit		Topics			No. of Lectures
		Lab Experime	ent List		Lectures
	 Modulus of rigidity Modulus of rigidity Modulus of rigidity Young's modulus Young's modulus Young's modulus Poisson's ratio of rigidity Surface tension of Surface tension of Coefficient of visc Acceleration due to Frequency of AC rigidity Height of a building Study the wave for 	of an irregular body by iner y by statistical method (Bar y by dynamical method (spl by bending of beam and Poisson's ratio by Searl ubber by rubber tubing water by capillary rise meth water by Jaeger's method osity of water by Poiseuille o gravity by bar pendulum nains by Sonometer g by Sextant rm of an electrically mainta thode ray oscilloscope.	ton's apparatus) here / disc / Maxwe le's method hod 's method ined tuning fork / a		60
		Online Virtual Lab Expe	riment List / Link		
	Virtual Labs at Amrita Visl https://vlab.amrita.edu/?sub	• •			
		w of motion	l		

Suggested Readings

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e

3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019

4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

1. Virtual Labs at Amrita Vishwa Vidyapeetham, <u>https://vlab.amrita.edu/?sub=1&brch=74</u>

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments) 05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

PR

Prog	ramme/Class: Certificate	Year: Fir	st	Paper: Third	
		Subject: P	hysics		
Cour	se Code: B010201T	Course Title: T	Thermal Physics &	Semiconductor Devices	
		Course Outco	omes (COs)		
 Recognize the difference between reversible and irreversible processes. Understand the physical significance of thermodynamical potentials. Comprehend the kinetic model of gases w.r.t. various gas laws. Study the implementations and limitations of fundamental radiation laws. Utility of AC bridges. Recognize the basic components of electronic devices. Design simple electronic circuits. Understand the applications of various electronic instruments. 					
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks:	25+75	Ν	Iin. Passing Marks: 35	
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0					
Unit	Unit Topics			No. of Lectures	
		PART			
		Thermodynamics & Kir 0 th & 1 st Law of Ther		ses	
I	State functions and termino energy, heat and work dom between C_P and C_V . Carr combustion engines (Otto a	blogy of thermodynamics. 2 e. Work done in various the not's engine, efficiency an	Zeroth law and temp hermodynamical pr	ocesses. Enthalpy, relation	
		2 nd & 3 rd Law of The	rmodynamics		
п	 Different statements of second law, Clausius inequality, entropy and its physical significance. Entropy changes in various thermodynamical processes. Third law of thermodynamics and unattainability of absolute zero. Thermodynamical potentials, Maxwell's relations, conditions for feasibility of a process and equilibrium of a system. Clausius- Clapeyron equation, Joule-Thompson effect. 				
	Kinetic Theory of Gases				
ш	Kinetic model and deduvelocities and its experime (no derivation) and its app	ental verification. Degrees	s of freedom, law o	of equipartition of energy	7
		Theory of Rac			
IV	Blackbody radiation, spec Derivation of Planck's law Boltzmann law and Wien's	v, deduction of Wien's di	stribution law, Ray		7

	рартр						
	<u>PART B</u> Cincuit Fundamentela & Semiconductor Devices						
	Circuit Fundamentals & Semiconductor Devices DC & AC Circuits						
	Growth and decay of currents in RL circuit. Charging and discharging of capacitor in RC, LC and						
v	RCL circuits. Network Analysis - Superposition, Reciprocity, Thevenin's and Norton's theorems.	7					
v	AC Bridges - measurement of inductance (Maxwell's, Owen's and Anderson's bridges) and	/					
	measurement of capacitance (Schering's, Wein's and de Sauty's bridges).						
	Semiconductors & Diodes						
	P and N type semiconductors, qualitative idea of Fermi level. Formation of depletion layer in PN junction						
	diode, field & potential at the depletion layer. Qualitative idea of current flow mechanism in forward &						
VI	reverse biased diode. Diode fabrication. PN junction diode and its characteristics, static and dynamic	8					
• •	resistance. Principle, structure, characteristics and applications of Zener, Tunnel, Light Emitting, Point	0					
	Contact and Photo diodes. Half and Full wave rectifiers, calculation of ripple factor, rectification efficiency						
	and voltage regulation. Basic idea about filter circuits and voltage regulated power supply.						
	Transistors						
	Bipolar Junction PNP and NPN transistors. Study of CB, CE & CC configurations w.r.t. active,						
	cutoff & saturation regions; characteristics; current, voltage & power gains; transistor currents &						
VII	relations between them. Idea of base width modulation, base spreading resistance & transition time.	8					
	DC Load Line analysis and Q-point stabilisation. Voltage Divider Bias circuit for CE amplifier.						
	Qualitative discussion of RC coupled amplifier (frequency response not included).						
	Electronic Instrumentation						
	Multimeter: Principles of measurement of dc voltage, dc current, ac voltage, ac current and						
	resistance. Specifications of a multimeter and their significance.						
vm	Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, electron gun,	7					
,	electrostatic focusing and acceleration (no mathematical treatment). Front panel controls, special	·					
	features of dual trace CRO, specifications of a CRO and their significance. Applications of CRO to						
	study the waveform and measurement of voltage, current, frequency & phase difference.						
	Suggested Readings						
PAR	60 0						
	1.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997, 7e						
	.W. Sears, G.L. Salinger, "Thermodynamics, Kinetic theory & Statistical thermodynamics", Narosa P	ublishing					
	Iouse, 1998	<i>wo no no no </i>					
	nrico Fermi, "Thermodynamics", Dover Publications, 1956						
	. Garg, R. Bansal, C. Ghosh, "Thermal Physics", McGraw Hill, 2012, 2e						
	Ieghnad Saha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973, 5e						
PAR	ТВ						
	.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2	2015 11e					
	Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e	2010, 110					
	.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e						
	J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e						
	Suchakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e	50					
	.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e						
0. 3	Books published in Hindi & Other Reference / Text Books may be						
	suggested / added to this list by individual Universities.						
	suzzesien / unien io inis usi by inarraduat Oniversities.						

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://www.youtube.com/user/nptelhrd</u>
- 3. Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>
- 4. Swayam Prabha DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Course Prerequisites

Physics in 12th / Chemistry in 12th

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, <u>https://swayam.gov.in/explorer?category=Physics</u>
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/course.html</u>
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, <u>https://www.edx.org/course/subject/physics</u>
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Programme/Class: Certificate		Year: First		Paper: Fourth		
		Subject: P	hysics			
Cours	e Code: B010202P	Course Title: There	mal Properties of I	Matter & Electronic Circ	uits	
		Course Outco	mes (COs)			
deterr	imental physics has the mo nine the thermal and elect iments. Online Virtual Lab E	ronic properties. Measuren Experiments give an insight in	nent precision and n simulation techniq	perfection is achieved the ues and provide a basis for n	rough Lab	
	Credits: 2 Core Compulsory / Elective Max. Marks: 25+75 Min. Passing Marks: 35					
	Max. Marks:	25+75	Ν	Ain. Passing Marks: 35		
	Total No. of	Lectures-Tutorials-Practic	al (in hours per wee	ek): L-T-P: 0-0-4		
Unit		Topics			No. of Lectures	
		Lab Experime	ent List			
	 Coefficient of ther Value of Stefan's of Verification of Ste Variation of therm Temperature coeff Charging and discl A.C. Bridges: Variant Resonance in serie Characteristics of a Characteristics of a Half wave & full w Unregulated and R 	fan's law o-emf across two junctions icient of resistance by Platin narging in RC and RCL circo ous experiments based on r s and parallel RCL circuit PN Junction, Zener, Tunnel a transistor (PNP and NPN) vave rectifiers and Filter circ egulated power supply ents with Cathode Ray Osc	by Searle's apparat onductor by Lee and of a thermocouple num resistance there cuits neasurement of L a , Light Emitting and in CE, CB and CC cuits illoscope (CRO)	us d Charlton's disc method with temperature mometer nd C d Photo diode	60	
		Online Virtual Lab Expe	riment List / Link			
	6. Newton's law of co	wa Vidyapeetham =1&brch=194 diation nduction tural convection change on: Determination of Stefan soling	's constant			
	 Lee's disc apparatu Thermo-couple: See 					

	Semiconductor Devices:	
	Virtual Labs an initiative of MHRD Govt. of India	
	http://vlabs.iitkgp.ac.in/be/#	
	9. Familiarisation with resistor	
	10. Familiarisation with capacitor	
	11. Familiarisation with inductor	
	12. Ohm's Law	
	13. RC Differentiator and integrator	
	14. VI characteristics of a diode	
	15. Half & Full wave rectification	
	16. Capacitative rectification	
	17. Zener Diode voltage regulator	
	18. BJT common emitter characteristics	
	19. BJT common base characteristics	
	20. Studies on BJT CE amplifier	
	Suggested Readings	
1.	B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1	962, 9e
2.	S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e	
3.	R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2	2015, 11e
4.	A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e	
	Books published in Hindi & Other Reference / Text Books may be	
	suggested / added to this list by individual Universities.	
	Suggestive Digital Platforms / Web Links	
1.	Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=194	
2.	Virtual Labs an initiative of MHRD Govt. of India, <u>http://vlabs.iitkgp.ac.in/be/#</u>	
3.	Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Unit	iversities.
	Course Prerequisites	
Op	oted / Passed Semester II, Theory Paper-1 (B010201T)	
	This course can be opted as an Elective by the students of following subjects	
Bo	tany / Chemistry / Computer Science / Mathematics / Statistics / Zoology	
	Suggested Continuous Internal Evaluation (CIE) Methods	
15	marks for Record File (depending upon the no. of experiments performed out of the total assigned exper	riments)
05	marks for Viva Voce	
05	marks for Class Interaction	
	Suggested Equivalent Online Courses	
	Further Suggestions	
	• The institution may add / modify / change the experiments of the same standard in the subject.	
	• The institution may suggest a minimum number of experiments (say 6) to be performed by each stud	lent per
	semester from the Lab Experiment List.	
	• The institution may suggest a minimum number of experiments (say 3) to be performed by each st	udent per
	semester from the Online Virtual Lab Experiment List / Link.	I

SECOND YEAR DETAILED SYLLABUS FOR

DIPLOMA

IN ADVANCED PHYSICS WITH ELECTRONICS

YEAR	SEME- STER	PAPER	PAPER TITLE	UNIT TITLE (Periods Per Semester)
	SIEK		DIPLON	``````````````````````````````````````
			IN APPLIED PHYSICS W	ITH ELECTRONICS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SEMESTER III	Theory Paper-1	Electromagnetic Theory & Modern Optics Part A: Electromagnetic Theory Part B: Physical Optics & Lasers	Part AI: Electrostatics (8)II: Magnetostatics (8)III: Time Varying Electromagnetic Fields (7)IV: Electromagnetic Waves (7)Part BV: Interference (8)VI: Diffraction (8)VII: Polarisation (7)VII: Lasers (7)
TEA		Practical	Demonstrative Aspects of	Lab Experiment List
DA		Paper-2	Optics & Lasers	Online Virtual Lab Experiment List/Link
SECOND YEAR	SEMESTER IV	Theory Paper-3	<b>Perspectives of Modern</b> <b>Physics &amp; Basic Electronics</b> Part A: Perspectives of Modern Physics Part B: Basic Electronics	Part AI: Relativity-Experimental Background (7)II: Relativity-Relativistic Kinematics (8)III: Inadequacies of Classical Mechanics (8)IV: Introduction to Quantum Mechanics (7)Part BV: Transistor Biasing (7)VI: Amplifiers (11)VII: Feedback Circuits (6)VIII: Oscillator Circuits (6)
		Practical Paper-4	Basic Electronics Instrumentation	Lab Experiment List Online Virtual Lab Experiment List/Link

Progr	amme/Class: <b>Diploma</b>	Year: Seco	nd	Paper: First		
		Subject: I	Physics			
Cours	se Code: <b>B010301T</b>	Course Title: I	Electromagnetic T	heory & Modern Optics		
		Course Outco	omes (COs)			
	setter understanding of elect	<b>e</b> 1	•			
	o troubleshoot simple probl					
	comprehend the powerful ap					
	tudy the fundamental physics behind reflection and refraction of light (electromagnetic waves). tudy the working and applications of Michelson and Fabry-Perot interferometers.					
	• • • •		•			
	ecognize the difference bet		oter's class of diffra	iction.		
	Comprehend the use of polar					
8. S	tudy the characteristics and					
	Credits:	4	Core	Compulsory / Elective		
	Max. Marks:	25+75	Ν	Ain. Passing Marks: 35		
	Total No. o	f Lectures-Tutorials-Practic	al (in hours per we	ek): L-T-P: <b>4-0-0</b>		
Unit	t Topics			No. of		
					Lectures	
		PART				
		Electromagne				
	Electrostatics					
	Electric charge & charge densities, electric force between two charges. General expression for Electric field in terms of volume charge density (divergence & curl of Electric field), general					
Ι	expression for Electric potential in terms of volume charge density and Gauss law (applications				×	
	included). Study of electric					
	displacement), electric susc	-	, <b>F</b> ,			
		Magnetosta	tics			
	Electric current & currer	0		current elements. General		
	Electric current & current densities, magnetic force between two current elements. General expression for Magnetic field in terms of volume current density (divergence and curl of Magnetic					
Π	field), General expression for Magnetic potential in terms of volume current density and Ampere's					
	circuital law (applications included). Study of magnetic dipole (Gilbert & Ampere model).					
	Magnetic fields in matter, magnetisation, auxiliary field H, magnetic susceptibility and					
	permeability.					
		Time Varying Electron	0			
	Faraday's laws of electror	•	•			
III						
	Derivation and physical sig		uations. Theory an	d working of moving coil		
	ballistic galvanometer (applications included).					
		Electromagnetie		1		
	Electromagnetic energy de		-			
IV	dielectrics, homogeneous a	• •	-	-	7	
	Reflection and refraction or law, Fresnel's formulae (or	•	•			
	naw, mesher s tornulae (of	iy for normal incluence & (	pricar requencies)	and Stoke S law.		

	<b>D ለ D ጥ D</b>	
	PART B Physical Optics & Lasers	
	Interference	
	Conditions for interference and spatial & temporal coherence. Division of Wavefront - Fresnel's	
V	Biprism and Lloyd's Mirror. Division of Amplitude - Parallel thin film, wedge shaped film and	8
	Newton's Ring experiment. Interferometer - Michelson and Fabry-Perot.	
	Diffraction	
	Distinction between interference and diffraction. Fresnel's and Fraunhofer's class of diffraction.	
V	Fresnel's Half Period Zones and Zone plate. Fraunhofer diffraction at a single slit, n slits and	8
	Diffracting Grating. Resolving Power of Optical Instruments - Rayleigh's criterion and resolving	
	power of telescope, microscope & grating.	
	Polarisation	
V	Polarisation by dichronic crystals, birefringence, Nicol prism, retardation plates and Babinet's	7
	compensator. Analysis of polarized light. Optical Rotation - Fresnel's explanation of optical	
	rotation and Half Shade & Biquartz polarimeters.	
	Lasers Characteristics and uses of Lasers. Quantitative analysis of Spatial and Temporal coherence.	
VI	I Conditions for Laser action and Einstein's coefficients. Three and four level laser systems	7
	(qualitative discussion).	
	Suggested Readings	
РΔ	RTA	
	D.J. Griffiths, "Introduction to Electrodynamics", Prentice-Hall of India Private Limited, 2002, 3e	
	E.M. Purcell, "Electricity and Magnetism (In SI Units): Berkeley Physics Course Vol 2", McGraw Hil	1, 2017,
	2e	
3.	Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics -	Vol. 2",
	Pearson Education Limited, 2012	
4.	D.C. Tayal, "Electricity and Magnetism", Himalaya Publishing House Pvt. Ltd., 2019, 4e	
	<u>RT B</u>	
_	Francis A. Jenkins, Harvey E. White, "Fundamentals of Optics", McGraw Hill, 2017, 4e	
2.	Samuel Tolansky, "An Introduction to Interferometry", John Wiley & Sons Inc., 1973, 2e	
3.	A. Ghatak, "Optics", McGraw Hill, 2017, 6e	
	Pooks nublished in Hindi f. Other Deference / Text Pooks may be	
	Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.	
	Suggestive Digital Platforms / Web Links	
1.	MIT Open Learning - Massachusetts Institute of Technology, <u>https://openlearning.mit.edu/</u>	
2.	National Programme on Technology Enhanced Learning (NPTEL), <u>https://www.youtube.com/user/npte</u>	elhrd
3.	Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>	<u></u>
4.	Swayam Prabha - DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>	
	Course Prerequisites	
Pas	sed Semester I, Theory Paper-1 (B010101T)	
	This course can be opted as an Elective by the students of following subjects	
<u> </u>		

Open to all

### Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar 05 marks for Class Interaction

#### **Suggested Equivalent Online Courses**

- 1. Swayam Government of India, <u>https://swayam.gov.in/explorer?category=Physics</u>
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, <u>https://www.edx.org/course/subject/physics</u>
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progr	amme/Class: Diploma	Year: Seco	nd	Paper: Second	
		Subject: P	hysics		
Cours	se Code: <b>B010302P</b>	Course Title: I	Demonstrative As	pects of Optics & Lasers	
		Course Outco	mes (COs)		
deteri	rimental physics has the mo- nine the optical properties e Virtual Lab Experiments	. Measurement precision a	and perfection is a	chieved through Lab Exp	periments.
	Credits:	2	Core	Compulsory / Elective	
	Max. Marks:	25+75	Ν	Iin. Passing Marks: 35	
	Total No. of	Lectures-Tutorials-Practica	al (in hours per wee	ek): L-T-P: <b>0-0-4</b>	
Unit		Topics			No. of Lectures
		Lab Experime	nt List		
	<ol> <li>Newton's Rings: V</li> <li>Newton's Rings: R</li> <li>Plane Diffraction O</li> <li>Plane Diffraction O</li> <li>Spectrometer: Refi</li> <li>Spectrometer: Disp</li> <li>Polarimeter: Speci</li> </ol>	hickness of mica sheet) Vavelength of sodium light defractive index of liquid Grating: Resolving power Grating: Spectrum of mercur active index of the material persive power of the materia fic rotation of sugar solution der light using diffraction by	of a prism using so al of a prism using r a single slit	-	
		Online Virtual Lab Expe	riment List / Link		
	Virtual Labs at Amrita Vish https://vlab.amrita.edu/?sub 1. Michelson's Interfe	=1&brch=189 rometer			60
	<ol> <li>Michelson's Interfe</li> <li>Newton's Rings: W</li> </ol>	rometer: Wavelength of las	er beam		
	-	efractive index of liquid			
	5. Brewster's angle de	-			
	6. Laser beam diverge	ence and spot size			
	Virtual Labs at Amrita Visl https://vlab.amrita.edu/inde	• •			
	8. Spectrometer: Disp	active index of the material persive power of a prism permination of Cauchy's cons	-		

### **Suggested Readings**

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

# Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

### Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=189
- 2. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/index.php?sub=1&brch=281
- 3. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

### **Course Prerequisites**

Passed Semester III, Theory Paper-1 (B010301T)

### This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

### Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments) 05 marks for Viva Voce

05 marks for Class Interaction

### Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

Prog	ramme/Class: <b>Diploma</b>	Year: Seco	ond	Paper: Third		
		Subject: P	Physics			
Cour	se Code: <b>B010401T</b>	Course Title: Persp	ectives of Modern P	hysics & Basic Electron	ics	
		Course Outco	omes (COs)			
	Recognize the difference betw	-			s.	
	Understand the physical sign	—	f Lorentz transformat	ion equations.		
	Comprehend the wave-partic	•				
	Develop an understanding of the foundational aspects of Quantum Mechanics.					
	Study the comparison between various biasing techniques.					
	Study the classification of an	•				
	Comprehend the use of feedb					
8. C	Comprehend the theory and w					
	Credits:	4	Core C	Compulsory / Elective		
	Max. Marks:	25+75	Mi	n. Passing Marks: 35		
	Total No. of	Lectures-Tutorials-Practic	al (in hours per week	): L-T-P: <b>4-0-0</b>		
Unit		Tonios			No. of	
Um		Topics			Lectures	
PART A						
	T	Perspectives of M			1	
	Relativity-Experimental Background					
-	Structure of space & time in Newtonian mechanics and inertial & non-inertial frames. Galilean					
Ι	transformations. Newtonian relativity. Galilean transformation and Electromagnetism. Attempts to locate the Absolute Frame: Michelson-Morley experiment and significance of the null result.					
			eriment and signific	ance of the null result.		
	Einstein's postulates of spe	Relativity-Relativisti	c Kinomatics			
	Structure of space & time	•		f Lorentz transformation	1	
	equations (4-vector formu					
	(derivations & examples i	-		-	•	
П	Transformation of Lengt		-		8	
	Transformation of Veloci					
	Transformation of Mass (	• •				
	(Einstein's mass & energy i		•	25		
		Inadequacies of Classi				
	Particle Properties of Way	es: Spectrum of Black Be	ody radiation, Photo	electric effect, Compton		
III	effect and their explanation	s based on Max Planck's Q	Quantum hypothesis.		8	
	Wave Properties of Particle	s: Louis de Broglie's hypo	thesis of matter wave	es and their experimental		
	verification by Davisson-Germer's experiment and Thomson's experiment.					
		Introduction to Quant	um Mechanics			
	Matter Waves: Mathematic	-				
IV	velocity, Phase (wave) velo	•	-		7	
	Wave Function: Functiona			-		
	wave functions and Probabi	listic interpretation of wave	e function based on H	Born Rule.		

	<u>PART B</u>	
	Basic Electronics	
	Transistor Biasing	
	Faithful amplification & need for biasing. Stability Factors and its calculation for transistor biasing	
V	circuits for CE configuration: Fixed Bias (Base Resistor Method), Emitter Bias (Fixed Bias with	7
	Emitter Resistor), Collector to Base Bias (Base Bias with Collector Feedback) &, Voltage Divider	
	Bias. Discussion of Emitter-Follower configuration.	
	Amplifiers	
	Classification of amplifiers based on Mode of operation (Class A, B, AB, C & D), Stages (single &	
	multi stage, cascade & cascode connections), Coupling methods (RC, Transformer, Direct & LC	
	couplings), Nature of amplification (Voltage & Power amplification) and Frequency capabilities	
<b>X</b> 7 <b>T</b>	(AF, IF, RF & VF).	11
VI	Theory & working of RC coupled voltage amplifier (Uses of various resistors & capacitors, and	11
	Frequency response) and Transformer coupled power amplifier (calculation of Power, Effect of	
	temperature, Use of heat sink & Power dissipation).	
	Calculation of Amplifier Efficiency (power efficiency) for Class A Series-Fed, Class A	
	Transformer Coupled, Class B Series-Fed and Class B Transformer Coupled amplifiers.	
	Feedback Circuits	
	Feedback Circuits: Effects of positive and negative feedback. Voltage Series, Voltage Shunt,	
	Current Series and Current Shunt feedback connection types and their uses for specific amplifiers.	
	Estimation of Input Impedance, Output Impedance, Gain, Stability, Distortion, Noise and Band	
	Width for Voltage Series negative feedback and their comparison between different negative	-
VII	feedback connection types.	6
	Oscillator Circuits	
VIII	Oscillator Circuits: Use of positive feedback for oscillator operation. Barkhausen criterion for self-	6
	sustained oscillations. Feedback factor and frequency of oscillation for RC Phase Shift oscillator	
	and Wein Bridge oscillator. Qualitative discussion of Reactive Network feedback oscillators (Tuned	
	oscillator circuits): Hartley & Colpitt oscillators.	
	Suggested Readings	
PAR	<u>Γ Α</u>	
. A	. Beiser, Shobhit Mahajan, "Concepts of Modern Physics: Special Indian Edition", McGraw Hill, 200	9, 6e
. Jo	ohn R. Taylor, Chris D. Zafiratos, Michael A.Dubson, "Modern Physics for Scientists and Engin	neers"
P	rentice-Hall of India Private Limited, 2003, 2e	
. R	.A. Serway, C.J. Moses, and C.A. Moyer, "Modern Physics", Cengage Learning India Pvt. Ltd, 2004,	3e

5. R. Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. John M. Senior, "Optical Fiber Communications: Principles and Practice", Pearson Education Limited, 2010, 3e
- 6. John Wilson, John Hawkes, "Optoelectronics: Principles and Practice", Pearson Education Limited, 2018, 3e
- 7. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

# Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

### Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://www.youtube.com/user/nptelhrd</u>
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

### **Course Prerequisites**

Passed Semester I, Theory Paper-1 (B010101T)

### This course can be opted as an Elective by the students of following subjects

Open to all

### Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

### Suggested Equivalent Online Courses

- 1. Swayam Government of India, <u>https://swayam.gov.in/explorer?category=Physics</u>
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/course.html</u>
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, <u>https://www.edx.org/course/subject/physics</u>
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progr	amme/Class: <b>Diploma</b>	Year: Secon	nd	Paper: Fourth	
		Subject: Pl	nysics	-	
Cours	e Code: <b>B010402P</b>	Course Tit	le: Basic Electro	onics Instrumentation	
		Course Outcor	nes (COs)		
instru achiev	ments are used to study a ved through Lab Experime de a basis for modeling.	nd determine the electronic nts. Online Virtual Lab Exp	e properties. Me periments give an	industry wherever the com asurement precision and per n insight in simulation techni	fection i
	Credits		Co	re Compulsory / Elective	
	Max. Marks:	25+75		Min. Passing Marks: 35	
	Total No. of	Lectures-Tutorials-Practica	l (in hours per w	eek): L-T-P: <b>0-0-4</b>	
Unit		Topics			No. of Lectures
		Lab Experime	nt List		
	6. Frequency response	ollower e of single stage RC coupled e of single stage Transforme feedback on frequency respo rigger scillator dge oscillator <b>Online Virtual Lab Exper</b> f MHRD Govt. of India	er coupled amplif onse of RC coupl	ed amplifier	60
	<ol> <li>Diode as Clampers</li> <li>BJT as switch and</li> <li>Virtual Labs an initiative or</li> </ol>	Load Lines			
	http://vlabs.iitkgp.ac.in/be/				
	Virtual Labs at Amrita Vis https://vlab.amrita.edu/inde	• •			
	<ol> <li>5. Hartley oscillator</li> <li>6. Colpitt oscillator</li> </ol>				

#### Suggested Readings

 R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e

2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e

- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. John M. Senior, "Optical Fiber Communications: Principles and Practice", Pearson Education Limited, 2010, 3e
- 6. John Wilson, John Hawkes, "Optoelectronics: Principles and Practice", Pearson Education Limited, 2018, 3e
- 7. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested /

added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

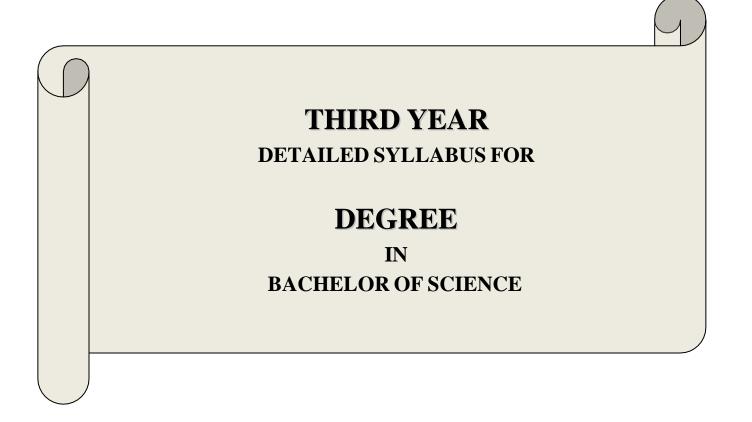
- 1. Virtual Labs an initiative of MHRD Govt. of India, <u>http://vlabs.iitkgp.ac.in/psac/#</u>
- 2. Virtual Labs an initiative of MHRD Govt. of India, <u>http://vlabs.iitkgp.ac.in/be/#</u>
- 3. Virtual Labs at Amrita Vishwa Vidyapeetham, <u>https://vlab.amrita.edu/index.php?sub=1&brch=201</u>
- 4. Virtual Labs at Amrita Vishwa Vidyapeetham, http://vlab.amrita.edu/index.php?sub=59&brch=269
- 5. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester IV, Theory Paper-1 (B010401T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology


Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments) 05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.



YEAR	SEME-	PAPER	PAPER TITLE	UNIT TITLE
	STER			(Periods Per Semester)
			DEGRE	
		[	IN BACHELOR O	
			Classical & Statistical Mechanics	Part A I: Constrained Motion (6) II: Lagrangian Formalism (9)
		Theory Paper-1	Part A: Introduction to Classical Mechanics Part B: Introduction to Statistical Mechanics	<ul> <li>III: Hamiltonian Formalism (8)</li> <li>IV: Central Force (7)</li> <li><u>Part B</u></li> <li>V: Macrostate &amp; Microstate (6)</li> <li>VI: Concept of Ensemble (6)</li> <li>VII: Distribution Laws (10)</li> <li>VIII: Applications of Statistical Distribution Laws (8)</li> </ul>
	SEMESTE R V	Theory Paper-2	Quantum Mechanics & Spectroscopy Part A: Introduction to Quantum Mechanics Part B: Introduction to Spectroscopy	Part A         I: Operator Formalism (8)         II: Eigen & Expectation Values (9)         III: Uncertainty Principle & (7)         IV: Schrodinger Equation and its Applications (6)         Part B         V: Vector Atomic Model (10)         VI: Spectra of Alkali & Alkaline Elements (6)         VII: X-Rays & X-Ray Spectra (7)         VIII: Molecular Spectra (7)
		Practical	Demonstrative Aspects of	Lab Experiment List
RD R		Paper-3	Electricity & Magnetism	Online Virtual Lab Experiment List/Link
THIRD YEAR		Theory Paper-4	Solid State & Nuclear Physics Part A: Introduction to Solid State Physics Part B: Introduction to Nuclear Physics	Part AI: Crystal Structure (7)II: Crystal Diffraction (7)III: Crystal Bindings (7)IV: Lattice Vibrations (9)Part BV: Nuclear Forces & Radioactive Decays (9)VI: Nuclear Models & Nuclear Reactions (9)
	SEMESTE R VI	Theory Paper-5	Analog & Digital Principles & Applications Part A: Analog Electronic Circuits Part B: Digital Electronics	VII: Accelerators & Detectors (6) VIII: Elementary Particles (6) Part A I: Semiconductor Junction (9) II: Transistor Modeling (8) III: Field Effect Transistors (8) IV: Other Devices (5) Part B V: Number System (6) VI: Binary Arithmetic (5)
		Practical Paper-6	Analog & Digital Circuits	<ul> <li>VII: Logic Gates (9)</li> <li>VIII: Combinational &amp; Sequential Circuits (10)</li> <li>Lab Experiment List</li> <li>Online Virtual Lab Experiment List/Link</li> </ul>

Prog	ramme/Class: Degree	Year: Thi	rd	Paper: First	
		Subject: <b>F</b>	Physics		
Cou	rse Code: <b>B010501T</b>	Course T	itle: Classical & St	atistical Mechanics	
		Course Outco	omes (COs)		
2. 1 3. 0 4. 5 5. 1 6. 0 7. 1	Understand the concepts of generalized coordinates and D'Alembert's principle. Understand the Lagrangian dynamics and the importance of cyclic coordinates. Comprehend the difference between Lagrangian and Hamiltonian dynamics. Study the important features of central force and its application in Kepler's problem. Recognize the difference between macrostate and microstate. Comprehend the concept of ensembles. Understand the classical and quantum statistical distribution laws. Study the applications of statistical distribution laws.				
Credits: 4 Core Compulsory / Elective					
	Max. Marks: 25+75 Min. Passing Marks: 35				
	Total No. of	f Lectures-Tutorials-Practic	al (in hours per wee	ek): L-T-P: <b>4-0-0</b>	
Uni	Unit Topics			No. of Lectures	
		PAR			Lettires
		Introduction to Cla			1
I	Constraints - Definition, space. Constrained system Transformation equations D'Alembert's principle.	-	les. Degrees of Fi Constrained motion	n. Generalised coordinates	
п	Lagrangian for conservatiderivation), Comparison Conservation laws (with examples based on Lagran	of Newtonian & Lagran proofs and properties of	ystems, Lagrange' gian formulations,	Cyclic coordinates, and	
		Hamiltonian Fo	rmalism		
ш	Phase space, Hamiltonian Hamiltonian, Hamilton's Hamiltonian formulations, Simple examples based on	equation of motion (no Cyclic coordinates, and Co	derivation), Com	parison of Lagrangian &	
IV	Definition and properties ( of orbit. Bound & unbound theorem. Motion under inv Lenz vector (Runge-Lenz v	d orbits, stable & non-stab erse square law of force and	e. Equation of motion le orbits, closed &	open orbits and Bertrand's	

	PART B	
	Introduction to Statistical Mechanics	
	Macrostate & Microstate	
v	Macrostate, Microstate, Number of accessible microstates and Postulate of equal a priori. Phase	6
V	space, Phase trajectory, Volume element in phase space, Quantisation of phase space and number of	6
	accessible microstates for free particle in 1D, free particle in 3D & harmonic oscillator in 1D.	
	Concept of Ensemble	
	Problem with time average, concept of ensemble, postulate of ensemble average and Liouville's	6
VI	theorem (proof included). Micro Canonical, Canonical & Grand Canonical ensembles.	6
	Thermodynamic Probability, Postulate of Equilibrium and Boltzmann Entropy relation.	
	Distribution Laws	
	Statistical Distribution Laws: Expressions for number of accessible microstates, probability &	
	number of particles in ith state at equilibrium for Maxwell-Boltzmann, Bose-Einstein & Fermi-	
VП	Dirac statistics. Comparison of statistical distribution laws and their physical significance.	10
	Canonical Distribution Law: Boltzmann's Canonical Distribution Law, Boltzmann's Partition	
	Function, Proof of Equipartition Theorem (Law of Equipartition of energy) and relation between	
	Partition function and Thermodynamic potentials.	
	Applications of Statistical Distribution Laws	
	Application of Bose-Einstein Distribution Law: Photons in a black body cavity and derivation of	
VIII	Planck's Distribution Law	
	Application of Fermi-Dirac Distribution Law: Free electrons in a metal, Definition of Fermi energy,	8
	Determination of Fermi energy at absolute zero, Kinetic energy of Fermi gas at absolute zero and	
	concept of Density of States (Density of Orbitals).	
	Suggested Readings	
PAR		
<b>PAR</b> 1. I	<u>ATA</u>	2011, 3e
1. I	<u>AT A</u> Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2	2011, 3e
1. H 2. N	A <u>T A</u> Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017	2011, 3e
1. H 2. N	<u>AT A</u> Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2	2011, 3e
1. H 2. N 3. H	ET A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017 R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017	2011, 3e
1. H 2. M 3. H PAR	ET A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017 R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017	2011, 3e
1. H 2. M 3. H PAR 1. H	<ul> <li><u>AT A</u></li> <li>Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2</li> <li>N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li><u>AT B</u></li> <li>F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e</li> </ul>	2011, 3e
1. H 2. M 3. H <b>PAR</b> 1. H 2. H	<ul> <li><u>AT A</u></li> <li>Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2</li> <li>N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li><u>AT B</u></li> <li>F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e</li> <li>B.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e</li> </ul>	2011, 3e
1. H 2. M 3. H <b>PAR</b> 1. H 2. H	<ul> <li><u>AT A</u></li> <li>Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2</li> <li>N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li><u>AT B</u></li> <li>F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e</li> </ul>	2011, 3e
1. H 2. M 3. H <b>PAR</b> 1. H 2. H	<ul> <li><u>AT A</u></li> <li>Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2</li> <li>N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li><u>AT B</u></li> <li>F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e</li> <li>B.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e</li> </ul>	2011, 3e
1. H 2. M 3. H <b>PAR</b> 1. H 2. H	<ul> <li>CT A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li>CT B F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e 3.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e 3.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e</li> </ul>	2011, 3e
1. H 2. M 3. H <b>PAR</b> 1. H 2. H	<ul> <li>CT A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li>CT B F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e 3.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e 3.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e</li> </ul>	2011, 3e
1. H 2. M 3. H <b>PAR</b> 1. H 2. H	<ul> <li>CT A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li>CT B F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e 3.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e 3.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e</li> </ul>	2011, 3e
1. H 2. M 3. H <b>PAR</b> 1. H 2. H 3. H	<ul> <li>CT A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li>CT B F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e</li> <li>B.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e</li> <li>B.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e</li> <li>Books published in Hindi &amp; Other Reference / Text Books may be suggested / added to this list by individual Universities.</li> </ul>	2011, 3e
1. H 2. M 3. H <b>PAR</b> 1. H 2. H 3. H	<ul> <li>ET A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li>ET B</li> <li>Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e</li> <li>B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e</li> <li>S.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e</li> <li>Books published in Hindi &amp; Other Reference / Text Books may be suggested / added to this list by individual Universities.</li> </ul>	
1. H 2. M 3. H 1. H 2. H 3. H 3. H 1. N 2. M	<ul> <li>CT A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li>CT B F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e 3.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e 3.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e Books published in Hindi &amp; Other Reference / Text Books may be suggested / added to this list by individual Universities.</li> <li>MIT Open Learning - Massachusetts Institute of Technology, <a href="https://openlearning.mit.edu/">https://openlearning.mit.edu/</a></li> </ul>	
1. H 2. M 3. H 4. H 2. H 3. H 1. M 2. M 3. U	<ul> <li>CT A Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017</li> <li>R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017</li> <li>CT B B. Laud, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e 3.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e 3.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e Books published in Hindi &amp; Other Reference / Text Books may be suggested / added to this list by individual Universities.</li> <li>Suggestive Digital Platforms / Web Links</li> </ul>	
1. H 2. M 3. H 4. H 2. H 3. H 1. M 2. M 3. U	<b>CT A</b> Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017 R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017 <b>CT B F</b> . Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e <b>B</b> . Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e <b>B</b> .K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e <b>Books published in Hindi &amp; Other Reference / Text Books may be</b> suggested / added to this list by individual Universities. <b>MIT</b> Open Learning - Massachusetts Institute of Technology, <a href="https://openlearning.mit.edu/">https://openlearning.mit.edu/</a> National Programme on Technology Enhanced Learning (NPTEL), <a href="https://www.youtube.com/user/npte">https://www.youtube.com/user/npte</a>	
1. H 2. M 3. H 4. S 1. M 2. H 3. H 3. H 4. S	<b>T A</b> Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2 N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017 R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017 <b>T B</b> 7. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e 8.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e 8.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e <b>Books published in Hindi &amp; Other Reference / Text Books may be</b> suggested / added to this list by individual Universities. MIT Open Learning - Massachusetts Institute of Technology, <a href="https://openlearning.mit.edu/">https://openlearning.mit.edu/</a> Vational Programme on Technology Enhanced Learning (NPTEL), <a href="https://www.youtube.com/user/npte">https://www.youtube.com/user/npte</a> Jutar Pradesh Higher Education Digital Library, <a href="https://www.swayamprabha.gov.in/searchContent.aspx">https://www.swayamprabha.gov.in/searchContent.aspx</a> Swayam Prabha - DTH Channel, <a href="https://www.swayamprabha.gov.in/index.php/program/current_he/8">https://www.swayamprabha.gov.in/index.php/program/current_he/8</a>	

#### This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

#### Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar 05 marks for Class Interaction

#### **Suggested Equivalent Online Courses**

- 1. Swayam Government of India, <u>https://swayam.gov.in/explorer?category=Physics</u>
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progr	amme/Class: <b>Degree</b>	Year: Thi	rd	Paper: Second	
		Subject: P	hysics		
Cours	se Code: <b>B010502T</b>	Course Title	e: Quantum Mecha	nnics & Spectroscopy	
		Course Outco	mes (COs)		
<ol> <li>S</li> <li>U</li> <li>L</li> <li>L</li></ol>	Inderstand the significance of tudy the eigen and expectat Inderstand the basis and inte Develop the technique of sol Comprehend the success of V tudy the different aspects of tudy the production and app Develop an understanding of	ion value methods. erpretation of Uncertainty p ving Schrodinger equation Vector atomic model in the spectra of Group I & II ele- blications of X-rays.	rinciple. for 1D and 3D probl theory of Atomic sp ements.		
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks:	25+75	N	lin. Passing Marks: 35	
	Total No. of	Lectures-Tutorials-Practic	al (in hours per wee	k): L-T-P: <b>4-0-0</b>	
Unit		Topics			No. of Lectures
		<u>PAR1</u> Introduction to Qua			
	Operators: Review of matri and operators correspondin Commutators: Definition, momentum & angular mo relations.	<b>Operator For</b> x algebra, definition of an g to various physical-dynar commutator algebra and c	malism operator, special op mical variables. commutation relation	ns among position, linear	
п	Eigen & Expectation Va functions. Linear superpos Expectation value pertainir Hermitian Operators: Defiver various physical-dynamical	ition of eigen functions an g to an operator and its phy inition, properties and app	an operator, eigen d Non-degenerate & ysical interpretation	& Degenerate eigen states	9
ш	Uncertainty Principle: Cor of operators as the basis f principle through Schwarz dynamical parameters and	Uncertainty Prin nmutativity & simultaneity for uncertainty principle a inequality. Uncertainty pri	y (theorems with pr nd derivation of ge	eneral form of uncertainty	7

	1	
IV	Schrodinger Equation & its Applications Schrodinger Equation: Derivation of time independent & time dependent forms, Schrodinger equation as an eigen equation, Deviation & interpretation of equation of continuity in Schrodinger representation, and Equation of motion of an operator in Schrodinger representation. Application to 1D Problems: Infinite Square well potential (Particle in 1D box), Finite Square well potential, Potential step, Rectangular potential barrier and 1D Harmonic oscillator.	6
	PART B	
	Introduction to Spectroscopy	
v	<b>Vector Atomic Model</b> Inadequacies of Bohr and Bohr-Sommerfeld atomic models w.r.t. spectrum of Hydrogen atom (fine structure of H-alpha line). Modification due to finite mass of nucleus and Deuteron spectrum. Vector atomic model (Stern-Gerlach experiment included) and physical & geometrical interpretations of various quantum numbers for single & many valence electron systems. LS & jj couplings, spectroscopic notation for energy states, selection rules for transition of electrons and intensity rules for spectral lines. Fine structure of H-alpha line on the basis of vector atomic model.	10
VI	Spectra of Alkali & Alkaline Elements Spectra of alkali elements: Screening constants for s, p, d & f orbitals; sharp, principle, diffuse & fundamental series; doublet structure of spectra and fine structure of Sodium D line. Spectra of alkaline elements: Singlet and triplet structure of spectra.	6
VII	X-Rays & X-Ray Spectra Nature & production, Continuous X-ray spectrum & Duane-Hunt's law, Characteristic X-ray spectrum & Mosley's law, Fine structure of Characteristic X-ray spectrum, and X-ray absorption spectrum.	7
VIII	<b>Molecular Spectra</b> Discrete set of energies of a molecule, electronic, vibrational and rotational energies. Quantisation of vibrational energies, transition rules and pure vibrational spectra. Quantisation of rotational energies, transition rules, pure rotational spectra and determination of inter nuclear distance. Rotational-Vibrational spectra; transition rules; fundamental band & hot band; O, P, Q, R, S branches.	7
	Suggested Pendings	
PAR	Suggested Readings	
1. I 2. H 3. H 4. H	D.J. Griffiths, "Introduction to Quantum Mechanics", Pearson Education, India, 2004, 2e E. Wichmann, "Quantum Physics (In SI Units): Berkeley Physics Course Vol 4", McGraw Hill, 2017 Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics - Pearson Education Limited, 2012 R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e	Vol. 3",
1. H 2. C 3. H	H.E. White, "Introduction to Atomic Spectra", McGraw Hill, 1934 C.N. Banwell, E.M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw Hill, 2017, 4e & Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e G.L. Gupta, V. Kumar, R.C. Sharma, "Elements of Spectroscopy", Pragati Prakashan, Meerut, 2015, 27	7e
	Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.	
2. C 3. F	<ul> <li>H.E. White, "Introduction to Atomic Spectra", McGraw Hill, 1934</li> <li>C.N. Banwell, E.M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw Hill, 2017, 4e</li> <li>R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e</li> <li>S.L. Gupta, V. Kumar, R.C. Sharma, "Elements of Spectroscopy", Pragati Prakashan, Meerut, 2015, 27</li> <li><i>Books published in Hindi &amp; Other Reference / Text Books may be</i></li> </ul>	7e

# Suggestive Digital Platforms / Web Links 1. MIT Open Learning - Massachusetts Institute of Technology, <u>https://openlearning.mit.edu/</u> 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 3. 4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8 **Course Prerequisites** Passed Semester IV, Theory Paper-1 (B010401T) This course can be opted as an Elective by the students of following subjects Chemistry / Computer Science / Mathematics / Statistics Suggested Continuous Internal Evaluation (CIE) Methods 20 marks for Test / Quiz / Assignment / Seminar 05 marks for Class Interaction **Suggested Equivalent Online Courses** 1. Swayam - Government of India, https://swayam.gov.in/explorer?category=Physics 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy 4. edX, https://www.edx.org/course/subject/physics 5. MIT Open Course Ware - Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/ **Further Suggestions**

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Programme/Class: Degree		Year: Thi	rd	Semester: Third		
		Subject: P	hysics	L		
Cours	Course Code: <b>B010503P</b> Course Title: <b>Demonstrative Aspects of Electricity &amp; Magnetis</b>					
	Course Outcomes (COs)					
deterr	nine the electric and mag	ost striking impact on the inetic properties. Measuren Experiments give an insight	nent precision and in simulation techni	perfection is achieved the	rough Lab	
	Max. Marks:	25+75	Ν	Ain. Passing Marks: 35		
	Total No. of	Lectures-Tutorials-Practic	al (in hours per wee	ek): L-T-P: <b>0-0-4</b>		
Unit		Topics			No. of Lectures	
		Lab Experime	ont List		Lectures	
	<ol> <li>Variation of magnetic field along the axis of single coil</li> <li>Variation of magnetic field along the axis of Helmholtz coil</li> <li>Ballistic Galvanometer: Ballistic constant, current sensitivity and voltage sensitivity</li> <li>Ballistic Galvanometer: High resistance by Leakage method</li> <li>Ballistic Galvanometer: Low resistance by Kelvin's double bridge method</li> <li>Ballistic Galvanometer: Self inductance of a coil by Rayleigh's method</li> <li>Ballistic Galvanometer: Comparison of capacitances</li> <li>Carey Foster Bridge: Resistance per unit length and low resistance</li> <li>Deflection and Vibration Magnetometer: Magnetic moment of a magnet and horizonta component of earth's magnetic field</li> <li>Earth Inductor: Horizontal component of earth's magnetic field</li> </ol>			e method nethod re f a magnet and horizontal	60	
	Online Virtual Lab Experiment List / Link					
	Virtual Labs at Amrita Vishwa Vidyapeetham https://vlab.amrita.edu/?sub=1&brch=192					
	<ol> <li>Tangent galvanome</li> <li>Magnetic field alor</li> <li>Deflection magnete</li> <li>Van de Graaff gene</li> <li>Barkhausen effect</li> <li>Temperature coeffi</li> <li>Anderson's bridge</li> <li>Quincke's method</li> </ol>	ng the axis of a circular coil ometer erator	carrying current			

#### **Suggested Readings**

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e

3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019

4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

# Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

#### **Suggestive Digital Platforms / Web Links**

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=192

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

#### **Course Prerequisites**

Opted / Passed Semester III, Theory Paper-1 (B010501T)

#### This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

#### Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments) 05 marks for Viva Voce

05 marks for Class Interaction

### **Suggested Equivalent Online Courses**

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

Programme/Class: <b>Degree</b>		Year: Thi	rd	Paper: Fourth	
		Subject: P	hysics		
Cours	Course Code: <b>B010601T</b> Course Title: <b>Solid State &amp; Nuclear Physics</b>				
		Course Outco	mes (COs)		
<ol> <li>Understand the crystal geometry w.r.t. symmetry operations.</li> <li>Comprehend the power of X-ray diffraction and the concept of reciprocal lattice.</li> <li>Study various properties based on crystal bindings.</li> <li>Recognize the importance of Free Electron &amp; Band theories in understanding the crystal properties.</li> <li>Study the salient features of nuclear forces &amp; radioactive decays.</li> <li>Understand the importance of nuclear models &amp; nuclear reactions.</li> <li>Comprehend the working and applications of nuclear accelerators and detectors.</li> <li>Understand the classification and properties of basic building blocks of nature.</li> </ol>					
	Credits: 4 Core Compulsory / Elective				
	Max. Marks: 25+75 Min. Passing Marks: 35				
	Total No. of	Lectures-Tutorials-Practic	al (in hours per wee	k): L-T-P: <b>4-0-0</b>	
Unit	it Topics			No. of Lectures	
		<u>PAR1</u> Introduction to Sol			
I	Crystal Structure Lattice, Basis & Crystal structure. Lattice translation vectors, Primitive & non-primitive cells. Symmetry operations, Point group & Space group. 2D & 3D Bravais lattice. Parameters of cubic lattices. Lattice planes and Miller indices. Simple crystal structures - HCP & FCC, Diamond, Cubic Zinc Sulphide, Sodium Chloride, Cesium Chloride and Glasses.				
п	<b>Crystal Diffraction</b> X-ray diffraction and Bragg's law. Experimental diffraction methods - Laue, Rotating crystal and Powder methods. Derivation of scattered wave amplitude. Reciprocal lattice, Reciprocal lattice vectors and relation between Direct & Reciprocal lattice. Diffraction conditions, Ewald's method and Brillouin zones. Reciprocal lattice to SC, BCC & FCC lattices. Atomic Form factor and Crystal Structure factor.			7	
ш	Classification of Crystals (Molecular) and Hydrogen London) & Repulsive Compressibility & Bulk mo of Madelung constant.	bonded. Crystals of inert interaction, Equilibrium	- Ionic, Covalent, gases, Attractive in lattice constant,	nteraction (van der Waals- Cohesive energy and	7

	Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.				
	N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019				
	enneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008 ernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017				
PAR'					
	.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015				
2. A	.J. Dekker, "Solid State Physics", Macmillan India Limited, 1993				
	harles Kittel, "Introduction to Solid State Physics", Wiley India Private Limited, 2012, 8e				
PAR					
	Suggested Readings				
VIII	elementary particles based on intrinsic-spin, mass, interaction & lifetime. Families of Leptons, Mesons, Baryons & Baryon Resonances. Conservation laws for mass-energy, linear momentum, angular momentum, electric charge, baryonic charge, leptonic charge, isospin & strangeness. Concept of Quark model.	6			
	<b>Elementary Particles</b> Fundamental interactions & their mediating quanta. Concept of antiparticles. Classification of				
	counter and Wilson cloud chamber.				
VII	Synchrotron. Detectors: Theory, working and applications of GM counter, Semiconductor detector, Scintillation	6			
	Accelerators & Detectors Accelerators: Theory, working and applications of Van de Graaff accelerator, Cyclotron and				
	nuclear reaction, Theory of nuclear fission (qualitative), Nuclear reactors and Nuclear fusion.				
	Nuclear Reactions: Bethe's notation, types of nuclear reaction, Conservation laws, Cross-section of				
	model (the level scheme in the context of reproduction of magic numbers included).	9			
	Nuclear Models: Liquid drop model and Bethe-Weizsacker mass formula. Single particle shell				
	Nuclear Models & Nuclear Reactions				
	radioactive series.				
	decay, gamma decay & electron capture, fundamental laws of radioactive disintegration and				
	Radioactive Decays: Nuclear stability, basic ideas about beta minus decay, beta plus decay, alpha	-			
	Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties.	9			
	General Properties of Nucleus: Mass, binding energy, radii, density, angular momentum, magnetic dipole moment vector and electric quadrupole moment tensor.				
	Nuclear Forces & Radioactive Decays				
	Introduction to Nuclear Physics				
	PART B				
	Effectice mass of an electron & Concept of Holes & Classification of solids on the basis of band theory.				
	Band Theory: Origin of band theory, Qualitative idea of Bloch theorem, Kronig-Penney model,				
	Paramagnetic susceptibility of conduction electrons and Hall effect in metals.				
IV	Lattice heat capacity, Dulong-Petit's law and Einstein's theory of lattice heat capacity. Free Electron Theory: Fermi energy, Density of states, Heat capacity of conduction electrons,				
	*				
	Lattice Vibrations Lattice Vibrations: Lattice vibrations for linear mono & di atomic chains, Dispersion relations and Acoustical & Optical branches (qualitative treatment). Qualitative description of Phonons in solids.				

#### Suggestive Digital Platforms / Web Links

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd

- 3. Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

#### **Course Prerequisites**

Passed Semester V, Theory Paper-2 (B010502T)

#### This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

#### Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

#### Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, <u>https://www.edx.org/course/subject/physics</u>
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Programme/Class: Degree		Year: Thi	Year: Third Paper: Fifth		
	Subject: Physics				
Cou	Course Code: B010602T Course Title: Analog & Digital Principles & Applications				
		Course Outco	omes (COs)		
1.	Study the drift and diffusion of charge carriers in a semiconductor.				
	inderstand the Two-Port model of a transistor.				
	Study the working, properties and uses of FETs.				
	Comprehend the design and operations of SCRs and UJTs.				
		Inderstand various number systems and binary codes.			
	Familiarize with binary arith				
	Study the working and prope				
8.	Comprehend the design of co Credits:			Commulaamy / Elastiva	
	Creans	. 4	Core	Compulsory / Elective	
	Max. Marks:	25+75	Ν	Ain. Passing Marks: 35	
	Total No. of	f Lectures-Tutorials-Practic	al (in hours per wee	ek): L-T-P: <b>4-0-0</b>	
Uni	*	Topics			No. of
					Lectures
		<u>PAR7</u> Analog Electro			
		Semiconductor			
	Expressions for Fermi ene	Expressions for Fermi energy, Electron density in conduction band, Hole density in valence band,			
	Drift of charge carriers (r			•	
Ι	-	charge carries in a semiconductor. Work function in metals and semiconductors.			
	Expressions for Barrier potential, Barrier width and Junction capacitance (diffusion & transition)				
	for depletion layer in a PN junction. Expressions for Current (diode equation) and Dynamic				
	resistance for PN junction.				
		Transistor Mo	odeling		
	Transistor as Two-Port Network. Notation for dc & ac components of voltage & current.				8
п	Quantitative discussion of Z, Y & h parameters and their equivalent two-generator model circuits.				
	h-parameters for CB, CE & CC configurations. Analysis of transistor amplifier using the hybrid				
	-	equivalent model and estimation of Input Impedance, Output Impedance and Gain (current, voltage			
	& power). Field Effect Transistors				
	IFET: Construction (N cha			CG): Operation in different	6
	JFET: Construction (N channel & P channel); Configuration (CS, CD & CG); Operation in different regions (Ohmic or Linear, Saturated or Active or Pinch off & Break down); Important Terms				
	(Shorted Gate Drain Current, Pinch Off Voltage & Gate Source Cut-Off Voltage); Expression for				
	Drain Current (Shockley equation); Characteristics (Drain & Transfer); Parameters (Drain				
ш	Resistance, Mutual Conductance or Transconductance & Amplification Factor); Biasing w.r.t. CS				
	configuration (Self Bias & Voltage Divider Bias); Amplifiers (CS & CD or Source Follower);				
	Comparison (N & P channels and BJTs & JFETs).				
	MOSFET: Construction and Working of DE-MOSFET (N channel & P channel) and E-MOSFET				
	(N channel & P channel); Characteristics (Drain & Transfer) of DE-MOSFET and E-MOSFET;				
	Comparison of JFFET and MOSFET.				

IV	Other Devices SCR: Construction; Equivalent Circuits (Two Diodes, Two Transistors & One Diode-One Transistor); Working (Off state & On state); Characteristics; Applications (Static switch, Phase control system & Battery charger). UJT: Construction; Equivalent Circuit; Working (Cutoff, Negative Resistance & Saturation regions); Characteristics (Peak & Valley points); Applications (Trigger circuits, Relaxation oscillators & Sawtooth generators).	5
	PART B	
	Digital Electronics	
v	Number System Number Systems: Binary, Octal, Decimal & Hexadecimal number systems and their inter conversion. Binary Codes: BCD, Excess-3 (XS3), Parity, Gray, ASCII & EBCDIC Codes and their advantages & disadvantages. Data representation.	6
	Binary Arithmetic	
VI	Binary Addition, Decimal Subtraction using 9's & 10's complement, Binary Subtraction using 1's & 2's compliment, Multiplication and Division.	5
	Logic Gates	
VII	Truth Table, Symbolic Representation and Properties of OR, AND, NOT, NOR, NAND, EX-OR & EX-NOR Gates. Implementation of OR, AND & NOT gates (realization using diodes & transistor). De Morgan's theorems. NOR & NAND gates as Universal Gates. Application of EX-OR & EX-NOR gates as pairty checker. Boolean Algebra. Karnaugh Map.	9
	Combinational & Sequential Circuits	
VII	Combinational Circuits: Half Adder, Full Adder, Parallel Adder, Half Substractor, Full Substractor. I Data Processing Circuits: Multiplexer, Demultiplexer, Decoders & Encoders. Sequential Circuits: SR, JK & D Flip-Flops, Shift Register (transfer operation of Flip-Flops), and Asynchronous & Synchronous counters.	10
	Suggested Readings	
2. J 3. I	RT A R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2 J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975,	

5. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

### PART B

- 1. D. Leach, A. Malvino, Goutam Saha, "Digital Principles and Applications", McGraw Hill, 2010, 7e
- 2. William H. Gothmann, "Digital Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e
- 3. R.P. Jain, "Modern Digital Electronics", McGraw Hill, 2009, 4e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

#### **Course Prerequisites**

Passed Semester IV, Theory Paper-1 (B010401T)

#### This course can be opted as an Elective by the students of following subjects

Open to all

#### Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar 05 marks for Class Interaction

### Suggested Equivalent Online Courses

- 1. Swayam Government of India, <u>https://swayam.gov.in/explorer?category=Physics</u>
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/course.html</u>
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, <u>https://www.edx.org/course/subject/physics</u>
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Programme/Class: <b>Degree</b>		Year: Third		Paper: Sixth	
		Subject: P	hysics		
Cours	Course Code: <b>B010603P</b> Course Title: <b>Analog &amp; Digital Circuits</b>				
		Course Outco	mes (COs)		
used	bg & digital circuits have t to study and determine the Experiments. Online Virtual ling.	electronic properties. Mea	asurement precision	n and perfection is achieve	ed through
	Credits:	2	Core	Compulsory / Elective	
	Max. Marks:	25+75	Ν	Iin. Passing Marks: 35	
	Total No. of	Lectures-Tutorials-Practic	al (in hours per wee	ek): L-T-P: <b>0-0-4</b>	
Unit		Topics		No. of Lectures	
	<ol> <li>Energy band gap of semiconductor by reverse saturation current method</li> <li>Energy band gap of semiconductor by four probe method</li> <li>Hybrid parameters of transistor</li> <li>Characteristics of FET, MOSFET, SCR, UJT</li> <li>FET Conventional Amplifier</li> <li>FET as VVR and VCA</li> <li>Study and Verification of AND gate using TTL IC 7408</li> <li>Study and Verification of OR gate using TTL IC 7432</li> <li>Study and Verification of NAND gate and use as Universal gate using TTL IC 7400</li> <li>Study and Verification of NOR gate using TTL IC 7404</li> <li>Study and Verification of Ex-OR gate using TTL IC 7486</li> </ol>			using TTL IC 7400	60
	Online Virtual Lab Experiment List / Link				
	2. Silicon Controlled		tics		

Virtual Labs an initiative of MHRD Govt. of India https://de-iitr.vlabs.ac.in/List%20of%20experiments.html 4. Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates 5. Construction of half and full adder using XOR and NAND gates and verification of its operation 6. To study and verify half and full subtractor 7. Realization of logic functions with the help of Universal Gates (NAND, NOR) 8. Construction of a NOR gate latch and verification of its operation 9. Verify the truth table of RS, JK, T and D Flip Flops using NAND and NOR gates 10. Design and Verify the 4-Bit Serial In - Parallel Out Shift Registers 11. Implementation and verification of decoder or demultiplexer and encoder using logic gates 12. Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates 13. Design and verify the 4-Bit Synchronous or Asynchronous Counter using JK Flip Flop 14. Verify Binary to Gray and Gray to Binary conversion using NAND gates only 15. Verify the truth table of 1-Bit and 2-Bit comparator using logic gates **Suggested Readings** 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e 5. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e 6. D. Leach, A. Malvino, Goutam Saha, "Digital Principles and Applications", McGraw Hill, 2010, 7e 7. William H. Gothmann, "Digital Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e 8. R.P. Jain, "Modern Digital Electronics", McGraw Hill, 2009, 4e Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities. Suggestive Digital Platforms / Web Links Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/ssd/# 2. Virtual Labs an initiative of MHRD Govt. of India, https://de-iitr.vlabs.ac.in/List%20of%20experiments.html Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities. **Course Prerequisites** 

Opted / Passed Semester VI, Theory Paper-2 (B010602T)

### This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments) 05 marks for Viva Voce

05 marks for Class Interaction

1.

3.

### **Suggested Equivalent Online Courses**

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

-https:// -